先以集合論開始切入,集合論是以後各門數學相關學科的根基,也就是很多數學的分支都會定義在集合論上。
在數學上,集合就是一群不重複的物件(object)或是元素(element)。像我們可以定義一個set A當中的elements有a、b、c,寫成:
$$
A = \{ a, b, c \}
$$
先以集合論開始切入,集合論是以後各門數學相關學科的根基,也就是很多數學的分支都會定義在集合論上。
在數學上,集合就是一群不重複的物件(object)或是元素(element)。像我們可以定義一個set A當中的elements有a、b、c,寫成:
$$
A = \{ a, b, c \}
$$
attach Attach to a running container
build Build an image from a Dockerfile
commit Create a new image from a container's changes
cp Copy files/folders from the containers filesystem to the host path
diff Inspect changes on a container's filesystem
events Get real time events from the server
export Stream the contents of a container as a tar archive
history Show the history of an image
images List images
import Create a new filesystem image from the contents of a tarball
info Display system-wide information
inspect Return low-level information on a container
kill Kill a running container
load Load an image from a tar archive
login Register or Login to the docker registry server
logs Fetch the logs of a container
port Lookup the public-facing port which is NAT-ed to PRIVATE_PORT
pause Pause all processes within a container
ps List containers
pull Pull an image or a repository from the docker registry server
push Push an image or a repository to the docker registry server
restart Restart a running container
rm Remove one or more containers
rmi Remove one or more images
run Run a command in a new container
save Save an image to a tar archive
search Search for an image in the docker index
start Start a stopped container
stop Stop a running container
tag Tag an image into a repository
top Lookup the running processes of a container
unpause Unpause a paused container
version Show the docker version information
wait Block until a container stops, then print its exit code
We already know how to get a image and modify it, then share it through Docker Hub. It can be more portable and easy to customize. Just write a script in Dockerfile, and then use docker build
to build an image following the script in Dockerfile!
Usage: [sudo] docker [command] [flags] [arguments] ..
圖片取自博客來
今天看到書的前三分之一,但是忍不住要來跟大家分享書中的內容。這本看名字跟外表很容易被埋沒那些講成功的商業書籍中,但是這本可是史丹佛大學的心理學權威 Dr. Carol Dweck 的研究成果阿!他也有在 TED 發表過演講,是很值得看的一本書!
繼續閱讀在前一篇講完了 deep learning 的意義之後我們來更具體一點講 multi-layer perceptron (MLP)。
最簡單的版本莫過於 linear MLP,不過不太會有人去用他,其實只是每層 layer 的 activation function 都是採用 identity。你可以想像他是有很多的線性轉換所疊起來的模型。
繼續閱讀目標是計算生物學家!Systems Biology, Computational Biology, Machine LearningJulia Taiwan 發起人
研發替代役研究助理