保角映射
$\mathcal{Def.}$
$A$ 為保角映射(angle-preserving map)
$$
\frac{(Ax)^T(Ay)}{||Ax|| \cdot ||Ay||} = \frac{x^Ty}{||x|| \cdot ||y||} \\
(\Rightarrow A\text{ is invertible})
$$
$$
\Rightarrow A = sQ, Q^TQ = I, s \ne 0
$$
$s$ 代表伸縮量
$det Q = 1$: 伸縮 + 旋轉
$det Q = -1$: 伸縮 + 鏡射