$\mathcal{Def.}$

$A$ 為保角映射(angle-preserving map)

$$
\frac{(Ax)^T(Ay)}{||Ax|| \cdot ||Ay||} = \frac{x^Ty}{||x|| \cdot ||y||} \\
(\Rightarrow A\text{ is invertible})
$$

$$
\Rightarrow A = sQ, Q^TQ = I, s \ne 0
$$

$s$ 代表伸縮量

$det Q = 1$: 伸縮 + 旋轉
$det Q = -1$: 伸縮 + 鏡射