生物資訊的初衷
受到其他文章的啟發,我也來寫一篇為什麼我踏入生物資訊領域好了。
受到啟發應該算是從高中的時候說起,高中的時候喜歡數學、物理跟生物。對於數學,喜歡他的抽象及純粹,而物理可以解釋這個世界的法則,對於生物則是一直以來隱隱約約有些感覺的。小時候對於生命現象一直很好奇,對於生物的多樣性感到驚奇,但到了高中卻成了考卷上的考題,我不認為那是我要的。
還記得高中生物上到下視丘的時候會講到很多不同種的激素調控,我突然覺得這一切的背後似乎有著什麼,我對「調控」產生了興趣。接著到了高中快結束,終於上到近代的生物技術以及 DNA 分子的轉錄轉譯,雖然對當時的我來說有點複雜,但是我喜歡挑戰理解這種複雜的事物,我將他轉化成比較好理解的「設計圖」解釋。DNA 就像是一台車子的整體設計圖,RNA 就是將設計圖的一部份零件複製一份出來,並且製造出蛋白質,也就是真實的零件。理解了這些讓我非常開心。
大學念了醫學檢驗生物技術,但卻不是我的第一志願,不過我確定我對生物技術是有興趣的,我也非常認真對待我的選擇。在傳統的生物醫學研究都是花了十幾年的時間在研究一個蛋白或是一個基因的功能或是交互作用。
我大三的某天在逛維基百科(你沒看錯,我會去逛維基百科)被我發現了系統生物學這個領域,看到頁面的當下非常震驚,可以以一個系統的觀點切入生物的議題,那麼就可以不用那麼辛苦的一個基因一個基因研究了。而且系統的概念直接串起了在生化中學到的調控,他不只是 pathway,而是一個複雜的網路,可以藉由網路的調控或是反應機制,讓生物體做出特定的行為。生物體就是個巨大的機械,但是複雜度卻遠高於機械,也不像機構那樣那麼容易理解,很多事情是人類目前還不知道的。
因為這樣的未知,這樣的複雜,這樣的調控系統,讓我決心研究所要往這個方向走。
大四的時候有進階生物技術,接觸到定序技術、生物資訊、序列處理的議題。同時雙主修資訊工程,我更享受在資工系的課程當中,雖然他講的是程式、作業系統等等,但是對於(建造)系統的概念始終是保留的。我最有興趣的大概是離散數學、演算法跟訊號與系統了,離散數學中的圖論可以說是非常神妙,而圖論的用途也超級廣,可以拿來 model 很多不同的事物。演算法則是去證明一件事情可以被如何的完成是最快的,這些魔法都來自於數學。訊號與系統講述了如何去探知或是解析一個系統,我們怎麼從一個系統的行為當中去反推這個系統的架構。
到研究所真正接觸了生物資訊與我的認知相去不遠,不過還是少了點什麼,看了看課程發現了機器學習的課程,也詢問了學長關於這個領域,聽說還蠻推薦的,但是受限於開課時間,就乾脆自己去找了 coursera 上林軒田老師的機器學習課程看,大概一個月左右就把他看完了。看的當下非常開心,學到了跟演算法非常相似的技術,而當時大數據剛開始紅,所以就以這個技術為主軸開始了我的研究。
殊不知,後來的深度學習的崛起,AI 的爆紅,讓機器學習變得異常的熱門。不過我還是希望繼續做系統生物學,應該說是計算生物學。來把這迷樣的生物系統 model 出來吧!